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ABSTRACT 

 

The absence of a reasonable number of cases of malaria in low transmission settings often 

presents problems for epidemiologic studies of antimalarial drug resistance. Whole blood 

from filter paper spots is normally used as a source of deoxyribonucleic acid (DNA). The 

number of samples available to derive statistical power is usually limited due to low 

transmission rates. This study suggests an alternative source of DNA from Giemsa-stained 

thick smears (GSTS) for epidemiological studies of Plasmodium falciparum drug resistance. 

A total of 73 archived GSTS and 6 whole blood filter paper samples were available for this 

analysis. DNA obtained from GSTS was successfully extracted, genotyped and sequenced for 

64 (88%) samples for the Plasmodium falciparum chloroquine resistance transporter (pfcrt) 

gene, 51 (70%) samples for the Plasmodium falciparum multi-drug resistance 1 (pfmdr1) 

gene, 34 (47%) samples for the Plasmodium falciparum dihydrofolate reductase (pfdhfr) gene 

and 27 (37%) samples for the Plasmodium falciparum dihydropteroate synthase (pfdhps) 

gene. Whole blood from the 6 filter paper samples that were also run for comparison were all 

(100%) successfully genotyped and sequenced in a single attempt for all the four genes. The 
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ease of the analysis of the filter paper DNA samples and the quality of the gel electrophoresis 

pictures suggests that filter paper DNA sources are much more sensitive than archived GSTS 

samples. Nonetheless, the results of this study suggest that safely stored and clearly labelled 

GSTS can provide a cheap and somewhat reliable alternative source of DNA for retrospective 

epidemiologic studies using the polymerase chain reaction (PCR) analyses where filter paper 

sources are either not available or insufficient. It is, therefore, strongly recommended that 

laboratories in malaria low transmission settings develop guidelines for safe storage of GSTS 

for future use in genotyping and other experiments. Protocols to refine extraction and PCR 

methods as well as the design of appropriate primer pairs may improve the sensitivity of 

current PCR methods to improve the results of GSTS.  

 

Key words: Giemsa-stained thick smears, filter paper blood samples, pfcrt, pfmdr1, pfdhfr, 

pfdhps, polymerase chain reaction, DNA analysis. 

 

INTRODUCTION 

 

Microscopic examination of Giemsa-stained thick blood smears remains the method of choice 

for diagnosis malaria in endemic and non-endemic settings. Therefore, many laboratories 

generate large amounts of Giemsa-stained blood films that are stored either for future review 

or as a general practice. However, recently developed molecular techniques have gained 

importance particularly in reference laboratories and quality control settings. Whole blood 

provides a reliable source of high quality DNA for laboratory analysis (Zhong and Kain, 

1999) whether microscopy or molecular methods are used. DNA analysis results are 

dependent mainly on the handling, storage and transportation of samples to prevent 

degradation of DNA quality or contamination. In low transmission settings, fewer people are 
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infected and obtaining a sufficient number of samples for DNA analysis is often problematic. 

Lengthy follow-ups are required in order to obtain a sufficient number of samples to derive 

statistical power during analysis of epidemiologic studies. This problem has resulted in the 

reduction of the number of important research agendas requiring DNA analysis such as those 

for the analysis of molecular markers of antimalarial drug resistance. 

 

The polymerase chain reaction (PCR) has now revolutionized contemporaneous 

aetiologic diagnosis of infectious diseases and it provides a good standard for microscopic 

methods. However, the performance of the PCR method depends on the quality of DNA and 

the reagents used, as well as adequate DNA amplification conditions. Purchasing reagents 

from a reputable supplier and practising strict laboratory procedures when receiving, storing 

and using them ensures high performance of the PCR, leaving the quality of DNA as the only 

real problem towards achieving good PCR results. For a long time Giemsa-stained blood 

films were not considered as a possible source of DNA for PCR analysis because the quality 

was thought to be too low to guarantee good results. Previous studies had shown that DNA 

degradation may occur in Giemsa-stained blood films stored for greater than 4 years (Yokota 

et al., 1995). However, recent studies have showed success with blood films stored for more 

than 10 years in conditions not designed to protect DNA integrity, further suggesting that 

properly stored thick smears could remain useful for more than 10 years (Lee et al., 2009). 

Storage of thick smear in the open air was reported to cause DNA degradation through 

oxidative damage by atmospheric oxygen (Matsuo et al., 1995). However, the study by 

Matsuo and colleagues did not elaborate at what rate this degradation occurs and therefore, 

for how long thick smear blood could remain PCR sensitive on slides. None of these studies 

specifically report success of PCR analysis for Plasmodium falciparum chloroquine 

resistance transporter (pfcrt) gene, Plasmodium falciparum multi-drug resistance 1 (pfmdr1) 
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gene, Plasmodium falciparum dihydrofolate reductase (pfdhfr) gene and Plasmodium 

falciparum dihydropteroate synthase (pfdhps) gene from archived GSTS which is presented 

in the findings of this study. 

 

Several reports have also indicated poor performance of the PCR method for low 

parasite densities (Scopel et al, 2004; Kimura et al., 1995; Xiao et al., 2006). Detection of low 

parasite densities is of particular importance since the recently developed and globally 

introduced rapid diagnostic tests (RDTs) have low sensitivities at parasite densities below 

100/µl and 500µl for Plasmodium falciparum and non-falciparum species infections 

respectively. Detection of low parasite densities may be further enhanced by development of 

real-time PCR methods from the standard PCR methods. Real-time PCR assays are 

particularly attractive because of the short turn-over-time and the avoidance of post-PCR 

contamination (Klein, 2002; Mackay, 2004).  

 

Microscopy is also important in defining the species of malaria responsible for an 

infection. A well trained, proficient microscopist should be able to recognise the Plasmodium 

species correctly in GSTS samples at relatively low parasite densities. However, species 

definition by microscopy still has errors and most endemic countries contain incomplete or 

inaccurate information. Most documented species-defining errors involve differentiating 

between human infections with simian plasmodia, in particular, Plasmodium knowlesi. Again, 

the recently improved molecular methods have contributed a lot in correction of errors 

emanating from use of microscopy for classification of plasmodia species. 

 

This study describes the successful performance of PCR methods on GSTS samples derived 

from an area of low endemic setting such as Swaziland.  
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MATERIALS AND METHODS 

 

Source of isolates:  

Six filter paper blood samples were obtained from a 3-month cross-sectional survey in the 

Lowveld of Swaziland. The 6 cases were the only cases of malaria over the 3-month period of 

the survey. The number was too small for the analysis intended. So, an alternative source of 

DNA was sought from archived Giemsa-stained thick blood smears. Seventy-three thick 

smear slides were obtained from two centres in Swaziland (Ubombo Ranches Clinic and the 

Royal Swaziland Sugar Corporation [RSSC] Medical Centre). The analysis comprised only of 

slides prepared in 1999 were preferred because they were more in number than those of any 

other year which allowed confinement of the analysis to slides prepared in the same year.  

 

Isolation of DNA:  

The DNA extraction from slide samples was done at the London School of Hygiene and 

Tropical Medicine (LSHTM) laboratories using the QIAmp Mini Blood Purification kit 

(QIAGEN, UK) following the manufacturer’s instructions. The extraction was based on lysis 

of the blood sample products with QIAGEN protease enzyme in the presence of lysis Buffer 

AL.  Following release, the DNA binds to the QIAmp silica membrane on the spin column 

before it is washed with Buffers AW1 and AW2 and then eluted with Buffer AE. DNA from 

filter paper blood samples collected from patients that were positive for Plasmodium 

falciparum by microscopy was extracted using the Chelex method (Plowe et al., 1995). The 

pieces of filter paper impregnated with whole blood were cut with sterile scalpel blade and 

then lysed in 1ml of freshly made 0.5% Saponin (Sigma, Germany) in 1x Phosphate Buffer 

Solution (PBS). The samples were then incubated at 37
o
C overnight to lyse the cell 

membranes of red blood cells. Haemoglobin was released into the PBS leaving the parasite 
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DNA on the paper. The samples were briefly centrifuged at 4 000g for 2 minutes and saponin 

solution and debris removed using tips attached to a vacuum pump. One millilitre of 1x PBS 

was added and the samples spun again at 4 000g for 2 minutes. The liquid and debris was 

again removed. 150µl of 6% Chelex
®

100 suspension (Sigma, Germany) were added to the 

samples, using trimmed or wide bore pipette, and then they were covered with foil and heat 

sealed. The plate was then placed in a water bath for 20 – 25 minutes on a heated magnetic 

stirrer. The samples were again centrifuged at 4000g for 2mins to spin down the Chelex. The 

supernatant containing the DNA in aqueous solution (approx. 100µl) was taken off to a new 

plate and stored at -20
0
C. 

 

Amplification and genotyping of the pfcrt gene: 

Genotyping of the pfcrt gene for polymorphisms C72S, M74I, N75E, and K76T was done in 

at least two multiplex real-time PCR assays with full agreement using the Rotorgene 3000 

(Corbett Research, Australia) and primer sets and cycling conditions described elsewhere 

(Pearce et al., 2003) in the presence of the double-labelled probes representing CVIET (5’-

TGT GTA ATT GAA ACA ATT TTT GCT AA-3’), CVMNK (5’-TGT GTA ATG AAT 

AAA ATT TTT GCT AA-3’) and SVMNT (5’-AGT GTA ATG AAT ACA ATT TTT GCT 

AA-3’). 3D7, Dd2 and 7G8 DNA obtained from the Malaria Reference Laboratory of the 

London School of Hygiene and Tropical Medicine (LSHTM) was used as positive controls 

and nuclease-free water as negative control.  
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Amplification of the pfmdr1 loci: 

Polymorphisms at codons 86, 184, 1034, 1042 and 1246 of the pfmdr1 gene, associated with 

chloroquine resistance, were determined by PCR and direct sequencing. Amplification of the 

pfmdr1 gene was performed in two fragments (FR1 and FR2) using primer pairs and cycling 

conditions described earlier (Humphreys et al., 2007). However, for poor quality DNA that 

could not be successfully amplified in the long FR2, the fragment was further analysed in two 

smaller fragments (FR3 and FR4) using primer pairs and cycling conditions designed at the 

LSHTM laboratories and described elsewhere (Dlamini et al., 2010). All fragments of the 

pfmdr1 gene further involved a nested PCR amplification step using the primers and 

conditions described by Dlamini et al., (2010) for FR3 and FR4 or described earlier 

(Humphreys et al., 2007) for FR1 and FR2.  

 

Amplification of the dhps and dhfr loci:  

A PCR amplification of the 711bp dhps and 594bp dhfr proteins, associated with resistance to 

sulphadoxine-pyrimethamine (Fansidar
®
), containing single nucleotide polymorphisms 

(SNPs) at codons 50, 51, 59, 108, 164 and at codons 436, 437, 540, 581 and 613 respectively, 

was performed in two steps (primary and nested PCR) according to methods, primers and 

cycling conditions described previously
 

(Pearce et al. 2003). The primary PCR mix 

comprised: 15.3µl Nuclease free water, 2.5µl 10x KCl Reaction Buffer (Bioline, UK), 0.5µl 

10mM dNTPs (Bioline, UK), 1.0µl 10µM Forward Primer, 1.0µl 10µM Reverse Primer 

(MWG, Germany), 0.2µl 5U/µl BIOTAQ DNA Polymerase and 5.0µl DNA product. The 

DNA samples, 3D7 and Dd2, were used as positive controls and water as negative control. 

The reagents were mixed and run in a Thermal Cycler (Thermo Scientific, USA) using the 

primers and cycling conditions: at 93
o
C for 5 min, 41 cycles at 94

o
C for 30s, 54

o
C for 60s, 

and 65
o
C for 60s, and a final single cycle of 65

o
C for 5 min. The nested PCR step contained: 
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18.8µl Nuclease free water, 2.5µl 10x KCl Reaction Buffer, 0.5µl 10mM dNTPs, 1.0µl 10µM 

Forward Nested Primer and 1.0µl 10µM Nested Reverse Primer, 0.2µl 5U/µl BIOTAQ DNA 

Polymerase and 1.0µl DNA primary PCR product to make a final volume of 25µl. The 

reactants were placed in a Thermo Cycler and run at: 95
o
C for 5 min, 30 cycles of 93

o
C for 

30s, 56
o
C for 30s and 68

o
C for 75s and a final cycle of 75

o
C for 5 min.  

 

Purification of PCR products: 

All PCR products of nested reactions were separated by gel electrophoresis on a 1.2% agarose 

gel stained with Ethidium bromide to identify amplified bands of DNA under ultra-violet 

illumination. Selected amplicons that were successfully amplified according to the gel 

electrophoresis result were purified using the QIAquick PCR Purification Kit (QIAGEN, UK) 

according to the manufacturer’s instructions. Briefly, the QIAquick system is conveniently 

constructed to combine a spin-column and a selectively binding silica membrane in the 

presence of binding Buffer PBI. In the presence of high chaotropic salt concentrations, about 

10µl of the DNA is adsorbed onto the silica membrane while contaminants pass through. 

Binding Buffer PBI provide correct chaotropic salt concentration and pH to optimise the 

recovery of DNA and removal of contaminants. The Buffer (PBI) contains a pH indicator 

(yellow) which allow easy determination of the optimal pH for DNA binding. Salts are 

quantitatively washed away by the ethanol-containing Buffer PE. Adsorption is about 95% 

when the pH is ≤7.5 and is reduced as the pH increases. DNA bound on the silica membrane 

was eluted with Tris buffer (Buffer EB) and the efficiency is determined by the salt 

concentration and pH of Buffer EB. Elution is most efficient at high pH and low salt 

concentrations. 
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Sequencing of purified PCR products: 

 Purified PCR products were subjected to the BigDye Terminator sequencing using conditions 

and sequencing primer pairs discussed elsewhere (Dlamini et al., 2010).  

 

RESULTS AND DISCUSSION 

 

The presence and quality of amplified DNA is determined by running the amplified nested 

PCR products on a 1.2% agarose gel. The concentration of the DNA in the PCR product 

corresponds with the intensity of the band on the gel picture. The gel electrophoresis pictures 

below (Fig.1) compare, in terms of intensity, the quality of filter paper DNA PCR product 

with Giemsa-stained thick smear DNA PCR product. 
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Filter paper pfdhps amplification products                          Giemsa-stained thick smear pfdhps 

amplification products 

 

Fig. 1 Gel electrophoresis pictures of PCR products 

 

From the gel pictures, it can be deduced that good quality bands were obtained from 

Giemsa-stained thick smear sources of DNA, suggesting that good quality DNA was obtained 

from a majority of samples by the DNA extraction methods used. Some of the bands are 

comparable in terms of quality with those from whole blood filter paper sources. However, in 

a majority of samples, the filter paper samples show better quality of bands particularly for 

the pfmdr1 gene.  

 

Sixty-four (88%) of the thick-smear blood samples were successfully genotyped for 

polymorphisms at the 72-76 codons of the pfcrt gene using multiplex real-time PCR. Other 

genes were genotyped using standard PCR methods. The most difficult gene to genotype was 

the pfdhps gene, where only 27 (37%) samples were successfully genotyped.  The complete 

results of all the genes are given below (Fig.2): 

Amplification products Amplification products 

Standard 1kb DNA ladder 

Amplification products 
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73 Giemsa-stained thick smear blood samples 
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           (Primary and Nested)                                    

 

 

                                        

                                       

                                       pfcrt                            pfmdr1                pfdhfr                  pfdhps 

                                       gene                             gene                  gene                     gene 

 

 

 

 

Fig. 2 Summary results of GSTS genotyping and sequencing experiments with pfcrt,  

           pfmdr1, pfdhfr and pfdhps genes 

 

The original amplification of Fragment 2 (FR2) of the pfmdr1 gene yielded results for only 

24/73 (33%) of the samples. The fragment was then analysed in a further two smaller 

88% 

47% 70% 37% 
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fragments (FR3 and FR4) and this resulted in an additional 27 to yield 51/73 (70%) of the 

samples being successfully genotyped.  The pfdhfr and pfdhps genes were analysed in single 

fragments of 711bp and 594bp, respectively.   

 

The PCR method is very useful for genetic studies on Plasmodium parasites, 

particularly those involving genetic markers of antimalarial resistance. The success of 

molecular analyses methods, including the PCR method, are influenced by the quality of 

DNA used for the analysis. This study has confirmed findings from earlier studies (Scopel et 

al., 2004) that filter paper DNA provides the best sensitiveness for PCR analysis. However, 

the analysis presented in this study raises an awareness of an alternative source of DNA that 

could yield useful results where filter paper samples cannot be obtained. This study has 

genotyped and sequenced DNA from GSTS that had been archived from routine practice i.e. 

without any intention to use in the future. Therefore, collection and storage of the samples 

may not have taken any precautions or followed specific guidelines to prevent DNA 

degradation and contamination. Preparation and storage of thick-smear blood samples is 

associated with the success of PCR amplification of a sample (Snounou et al., 1993; Barker et 

al., 1992). The success observed in this analysis is encouraging and suggests that countries 

with low or diminishing malaria transmission intensities can benefit from improving 

collection, labelling and storage of GSTS samples for further analysis in future to identify 

genetic changes in the parasite population. 

 

This analysis performed genotyping experiments for polymorphisms in the pfcrt, 

pfmdr1, pfdhfr and pfdhps genes. The real-time PCR used for pfcrt analysis could be more 

sensitive than the nested PCR method, hence 88% of the blood smear samples were 

successfully analysed. Therefore, development of real-time PCR methods for the pfmdr1 gene 
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could possibly improve the yield during analyses of this gene, probably resulting in improved 

yields even for Giemsa-stained samples. Recently, a real-time PCR was developed and 

evaluated on whole blood samples (Cnobs et al., 2010a) and Giemsa-stained thick blood 

samples (Cnobs et al., 2010b) that proved to be excellent in the detection of single and mixed 

species infections and showed a low detection limit. Scopel and colleagues (2004) compared 

the results of nested PCR using filter paper sources of DNA with GSTS sources. The study 

found 65% sensitivity and 93% specificity when DNA was obtained from GSTS, obviously 

showing lower sensitivity than DNA from filter paper sources. The variable sensitivity and 

high specificity of thick smear sources of DNA was further asserted to recently (Lee et al., 

2009).  

 

The pfmdr1 gene achieved 70% success after Fragment 2 was split into two shorter 

fragments (FR3 and FR4). Unfortunately, the study reported here did not have the time and 

resources to design new primers for shorter portions of the pfdhfr and pfdhps genes, but the 

improvement achieved in the pfmdr1 gene suggest that designing primer pairs that transcribe 

shorter regions of the pfdhfr and pfdhps genes has the potential to improve the result. 

Nonetheless, archived GSTS can reveal lots of information if re-analysed by PCR, suggesting 

that improved methods of collection, preparation and storage of thick blood films should be 

developed with the understanding that the films could be useful in the future when new 

diagnostic methods become available. 

 

Recently in Malaysia, archived blood films that were diagnosed in 1996 as 

Plasmodium malariae using microscopy were again analysed using the nested PCR method 

(Lee et al., 2009). Out of 35 blood films that were positive with Plasmodium-specific primers, 

35 (97.2%) were found to actually contain P. knowlesi DNA and only one contained P. 
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malariae DNA. Because microscopically diagnosed P. knowlesi infections are rare, 

prospective studies would not have revealed this important information which has also further 

strengthened the re-classification of P. knowlesi as also a human species of malaria. This 

Malaysian study further illustrates the volumes of information that may be revealed through 

analysis of carefully stored thick blood films. This study further strengthens the argument 

derived from the Malaysian study that stored GSTS samples offer material for retrospective 

studies from samples collected for routine diagnosis. 

 

The effect of long-term storage of GSTS samples on the sensitivity of a PCR in 

detecting malaria is unknown. Chaorattanakawae et al., (2003) reported that the sensitivity of 

the PCR method increases with the length of time filter paper blood samples are stored. If this 

assertion is true, it suggests that there might similarly not be a significant reduction of the 

sensitivity of stored GSTS as previously thought by many researchers. Nonetheless, the 

samples in this study have been stored for 10 years and still yielded fairly satisfactory results, 

suggesting that DNA stored for 10 years can still yield good results particularly if cycling 

conditions and primers that transcribe shorter portions of the target genes are developed. 

Apart from the quantity of DNA yielded, the sensitivity of the PCR is also affected by the 

impurities in each sample (Panteleeff et al., 1999; Barker et al., 1992), particularly haeme 

which interferes with the PCR process (Akane et al., 1994). This study performed only a 

single purification step using the QIAquick PCR Purification Kit (QIAGEN, UK). This kit is 

widely used and yields good results from a single purification step. However, studies to 

determine the effects of repeated purification procedures are very few. Chaorattanakawae et 

al., (2003) reported significantly improved yields after three purification steps, suggesting that 

the results achieved during analyses of DNA from GSTS could possibly be further improved 

by increasing the number of purification steps. 
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CONCLUSION AND RECOMMENDATIONS 

 

Despite the successful performance of the PCR on GSTS samples, whole blood samples 

remain the first choice for malaria diagnosis by PCR whenever possible. However, the results 

of this study suggest that GSTS samples could provide a solution for retrospective 

epidemiologic studies of drug resistance in situations where sufficient numbers of filter paper 

samples cannot be obtained or when not available at all. GSTS samples that are prepared for 

routine malaria diagnosis could be accumulated into large numbers to build statistical power 

during analyses. Laboratories should store their Giemsa-stained slides safely i.e. away from 

heat, direct sunlight and exposure to chemicals. Guidelines for proper collection and storage 

of GSTS slides should be developed in order to improve their usability for genotyping or 

other experiments many years later. Certainly, these slides should not be thrown away as was 

found to be the case with most laboratories in Swaziland. Protocols involving more robust and 

sensitive methods (such as multiplex real-time PCR) including appropriate primer pairs 

should be developed specifically to further improve the yield of genotyping experiments of 

GSTS samples. The advantage of real-time PCR is its higher analytical sensitivity when 

compared to standard PCR methods. Nonetheless, even with the existing methods, it has been 

proved that Giemsa-stained slides can provide lots of retrospective and accurate information 

where filter paper blood samples cannot be obtained.  
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